
N90- 16

PARALLEL ALGORITHMS
FOR INTERACTIVE MANIPULATION OF

DIGITAL TERRAIN MODELS"

E. W. Davis, D. F. McAIlister, and V. Nagaraj

Department of Computer Science
North Carolina State University

Raleigh, North Carolina 27695-8206

ABSTRACT

Interactive three dimensional graphics applications, such as
terrain data representation and manipulation, require
extensive arithmetic processing. Massively parallel machines
are attractive for this application since they offer high
computational rates, and grid connected architectures provide
a natural mapping for grid based terrain models. This paper
presents algorithms for data movement on the MPP in support
of pan and zoom functions over large data grids. It is an
extension of earlier work that demonstrated real-time
performance of graphics functions on grids that were equal in
size to the physical dimensions of the MPP. When the
dimensions of a data grid exceed the processing array size, data
is packed in the array memory. Windows of the total data grid
are interactively selected for processing, Movement of packed
data is needed to distribute items across the array for efficient
parallel processing. Execution time for data movement was
found to exceed that for arithmetic aspects of graphics
functions. Performance figures are given for routines written
in MPP Pascal.

Keywords: interactive graphics, parallel algorithms, MPP,
terrain models

INTRODUCTION

Multiprocessor architectures have been used for several years
to meet the demanding computational requirements of
interactive, 3D graphics. The computing resources may take
the form of specialized hardware that exploits the vector and
pipeline suitability of graphics problems.(Refs. 4, 5, 7, 9,
and 13). However, there are several architectures which were
not designed specifically with graphics applications in mind,
but are versatile enough to be used advantageously on the
vectorizable nature of the computations (Refs. 1, 2, 3, 6, and
11). This paper focuses on the use of one such machine, the
MPP, for a specific graphics problem: representation of
digital terrain data and interactive manipulation of
corresponding terrain images.

Prior work has shown the feasibility of interactive
manipulation of stereo pair images of small terrain models on
the MPP (Ref. 10). In the prior work grids of terrain data
were 128 by 128 points, exactly matching the dimensions ot
the MPP and leading to a natural mapping of terrain data to the
processing grid. In order to increase the possible applications,
it is necessary to implement interactive graphics operations

* This work was partially supported by NASA Goddard Space
Flight Center through the MPP Working Group.

on much larger databases of terrain points. Data structures
and algorithms reported in this paper are for pan and zoom
functions on larger databases. The work is more completely
described in Ref. 8.

PARALLEL ALGORITHMS

Data Representation

Grid-based digital terrain models contain an m by n

rectangular grid of points (xi, yj), l_<i<m, l_<j<_n, which
correspond to longitude and latitude values on the earth's
surface. Each grid point has an associated value zi,j which is
the elevation above sea level at the point (xi, yj).

Typically, a 128 by 128 grid of elevation points is considered
to match the MPP's architecture. Elevation points are assigned
to processing elements (PEs) in a straightforward way with
PEi,j containing the grid points (xi, yj, zi,j). A grid that just
matches the PE array size constitutes a small terrain model
and a limited display. In order to examine a different part of
the terrain, it is necessary to input a new set of coordinates
with elevation points from the host or staging memory. We
wish to make a large database available within the array unit
at the outset, and be able to display arbitrary parts of the
terrain in real-time, under interactive selection control.

The methods described in this paper can handle a terrain
database up to size 512 by 512 in the limited 1K per PE
memory of the MPP. However, for purposes of illustration, we
consider a model with a 4 by 4 array of PEs and an 8 by 8
array of terrain data. That is, there are four data points per
PE.

In order to exploit the full parallel capabilities of the MPP it
is necessary that terrain data points to be processed be spread
across the available PEs. This will require some movement of
data within the processing array. A particular storage
mapping, shown in figures 1 and 2, is chosen because it
supports the movements used in pan and zoom functions. The
original 8 by 8 data array, I in figure 1, is reformatted into
four 4 by 4 subarrays, A, B, C, and D in figure 2. Data
elements are mapped as folJows:

A = {at,j} where ai,j = 12i, 2j;
B = {hi,j} where bi,j = 12i, 2j+1;
C = {ci,j} where ci,j = 12i+1, 2j;
D = {di,j} where di,j = 12i+1, 2j+1;
where 0_<i_<3and 0<_j_<3.

CH2649-2/89/0000/0133501.00 © 1988 IEEE

133

oo

lo

2o

3O

4o

5o

6o

7o

Figure 1.

Ol

11

21

31

02 03

12 13

22 23

32 33

41 42 43

51 52 53

61 62 63

71 72 73

04 05 06 07

14 15 16 17

24 25 26 27

34 35 3S 37

44 45 46 47

54 55 56 57

64 65 66 67

74 75 7S 77

Terrain data in scan line order. Array I.

After reformatting, PEi,j will contain data points from the

same position in each of the four data arrays. That is, the

terrain data points shown in figure 2 as ai,j, bl,J, ci,j, and

di,j, collectively called ti,j, are mapped onto PEi,j.

oo 02 04 06

20 22 24 26

40 42 44 46

60 62 64 66

Array A

10 12 14 16

30 32 34 36

50 52 54 56

70 72 74 76

01 03 05 07

21 23 25 27

41 43 45 47

61 63 65 67

Figure 2.

Array B

11 13 15 17

31 33 35 37

51 53 55 57

71 73 75 77

Array C Array D

Reformatted data, as stored in a 4 by 4 PE array.

Windows

A subset of terrain points that exactly conforms to the

dimensions of the MPP is called a window. Figure 3, where a

square corresponds to a single PE, shows that a window only

includes data points that are localized to part of the PE array.

To exploit the parallelism of the machine, it is necessary to

spread the subset of points over the entire PE array such that

each PE has one data point from the window. Figure 4 shows

the distributed data produced by the "spread" function,
described below.

W

a00 bOO a01 b01 a02 b02 a03 b03

cOO d00 c01 d01 c02 d02 c03 d03

el0 bl0 all bll a12 b12 a13 b13

=201 b20 a21 b21 a22 Ib22 a23 b23

c201 d20 c21 d21 c22 Id22_ c23 d23
1

, b301 I
a30: a3J. b31 a322b32 a33 b33

I

c30 d30 i c31 d31 c32 d32 i c33 d33
i

Figure 3. Packed data with a window selected.

dlO cll dll c12

b20 a21 b21 a22

d20 c21 d21 c22

b30 a31 b31 a32

Figure 4. Distribution of the selected window over the array.

The "Spread" Function

This function consists of a series of bit plane data movement

operations. All statements in this routine are executed

simultaneously on all PEs. Two data movement masks NSMASK

and EWMASK are created. MPP Pascal (Ref. 12) primitives

such as "rotate" and "any" are used in conjunction with these

data planes to route the selected data to the target PE. The

"spread" routine is invoked four times so that elements of A,

B, C, and D enclosed by the window can be moved to their target

positions, one array at a time. Parameter SOURCE is the

particular source array; either A, B, C, or D. Parameter

INDEX is the position of the upper left corner of the window

when it is packed in the array.

routine SPREAD

MAKEMASK(A, B, C, D, SOURCE, INDEX, NSMASK,

EWMASK);

where (NSMASK _ 0)
rotate EWMASK and SOURCE to positions

indicated by NSMASK;

end where;

where (EWMASK _ 0)

rotate SOURCE to position indicated by

EWMASK;

end where;

end routine.

134

Routine SPREAD calls the following routine, MAKEMASK.

routine MAKEMASK (A, B, C, D, SOURCE, INDEX, NSMASK,
EWMASK);

for PEs outside the selected window
NSMASK = 0;
EWMASK = 0;
SOURCE = 0;

end for;
for PEs inside the selected window

depending on INDEX
SOURCE = A or B or C or D;

COMPUTEMASK (NSMASK, EWMASK);
end for;

end routine.
I'

Routine MAKEMASK calls routine COMPUTEMASK.

routine COMPUTEMASK (NSMASK, EWMASK);

If ti,j in PEi,j needs to be moved to PEx,y
II NSMASK = x-i;
II EWMASK = y-j;
II end if;
Ilend routine.

Once data has been spread over the entire array, further
functions such as intensity calculations, hidden surface
removal, and rendering, can be executed in parallel with each
PE handling one data point as in Ref. 10.

Pan and Zoom Functions

We are interested in the ability to move the window about in
the array of terrain point sets. This process of moving a
window in object space is called "panning". The routine that
follows provides the pan function as simply a selection of the
window to be spread. This routine is used prior to computation
of intensities and image rendering.

routine PAN (ORIGIN); ' i

choose window based on user-defined ORIGIN; ISPREAD;
end rout he.

Another means of examining the entire database is to sacrifice
resolution for extent of coverage. By choosing representative
data points from the database it is possible to zoom-in or
zoom-out using the routine below. The spacing between
adjacent chosen points determines the resolution or extent of
zoom. For our small example there are only two zoom settings.
Maximum resolution is achieved by choosing a window and
carrying out a SPREAD. For minimum resolution, it is
possible to simply select one of the four arrays A, B, C, or D.
With greater terrain data packing factors, intermediate levels
of resolution,, involving different extents of data movement,
are possible.

We note again that once data has been spread over the entire
array, further functions such as intensity calculations, hidden
surface removal, and rendering, can be executed in parallel.

routine ZOOM (ORIGIN, RESOLUTION, INDEX);
if RESOLUTION = MAX

choose window based on user-defined ORIGIN;
SPREAD;

end if;
if RESOLUTION = MIN

depending on INDEX
FINAL = A, or B, or C, or D;

end if;
end routine.

TIMING ANALYSIS

Graphics programs were written in MPP Pascal (Ref. 11) for
a database of 256 by 256 terrain points. Execution time can be
determined using system provided timing routines. The
structure of a typical graphics program loop with pan and
zoom operations is to distribute the data points from the
selected window over the entire array, then compute
intensities of all pixels in parallel, then render the image.
Table 1 gives actual timing measurements

distribute data 2283 milliseconds

compute intensities 5 milliseconds

render image 819 milliseconds

Table f. Measured timing for a 256 by 256 database.

The time taken 1o distribute data is almost entirely accounted
for by 28 calls to the SPREAD routine. It is invoked seven
times for each of the four arrays A, B, C, and D discussed
earlier. Moreover, the time taken to execute SPREAD once is
almost entirely accounted for by an inner loop which uses the
MPP Pascal "rotate" function extensively. The measured time
for one "rotate" is 204 microseconds. The time taken just for
executing "rotate" functions while distributing data is 2172
milliseconds. SPREAD is also used in rendering an image and
contributes greatly to its execution time.

An equivalent to the "rotate" function can be achieved in lower
level languages of the MPP in 3.3 microseconds, rather than
the 204. Table 2 is derived from the measured timing by
substituting the much lower rotate time.

distribute data 142 milliseconds

compute intensities 5 milliseconds

render image 53 milliseconds

Table 2. Expected timing with efficient "rotate".

A necessary condition for real-time graphics image generation
is that one pass through the .loop of the program must take no
more than 33 milliseconds. Even with the expected time table,
each pass takes 200 milliseconds, yielding only five frames
per second.

An alternative approach is to bypass data distribution in favor
of iteratively using a smaller portion of the processing array.

135

Image generation time using this approach, for the same
database as above, was measured at 73 milliseconds. Execution
time is reduced but full parallelism of the array is not used. As
the number of data points in the database is increased by a
factor of K, the number of active PEs in the array unit is
decreased by K. This will result in a factor of K increase in
time for the intensity computation alone.

A third approach is to maintain the database in the staging
memory and bring in only the data points needed for each
computation. Image generation time reduces to 59
milliseconds. However, data in the staging memory is only
accessible along certain predefined boundaries. This
complicates pan and zoom functions.

CONCLUSION

Prior work has shown massive parallelism to be suitable for
graphics applications on data arrays which fit the processing
array size. When larger arrays must be handled, the time
involved in moving data becomes the dominant part of the
problem and can take the performance out of the real-time
realm.

10.

11.

12.

13.

Pol, S., D. F. McAIlister, and E. W. Davis, "An
Application of the MPP to the Interactive Manipulation
of Stereo Images of Digital Terrain Models", Proc, of
the First Symposium on the Frontiers of Massively
Parallel Scientific Computing, NASA/GSFC, October
1986.

Potter, J., Editor, The Massively Parallel Processor,
The MIT Press, 1985.

Science Applications Research, MPP Pascal
Programmer's Guide, March 1988.

Stellar Computer, Inc., Stellar Graphics
Supercomputer Mode/ GS1000 System Overview,
1987.

REFERENCES

1. Batcher, K. E., "Design of a Massively Parallel
Processor", IEEE Trans. on Computers, Vol. C-29, No.
9, Sept. 1980, pp. 836-840.

2. Davis, E. W., and J. H. Reif, "Architecture and
Operation of the BLITZEN Processing Element", Proc. of
the Third Int. Conf. on Supercomputing, Boston, MA,
May 1988.

3. Blevins, D. W., E. W. Davis, R.A. Heaton, and J. H.
Reif, "BLITZEN: A Highly Integrated Massively Parallel
Machine", Proc. of the Second Symposium. on the
Frontiers of Massively Parallel Computing (this
proceedings), Fairfax, VA, October 1988.

4. Fuchs, H., et al, "Fast Spheres, Shadows, Textures,
Transparencies and Image Enhancements in Pixel-
Planes", SIGGRAPH, Vol, 19, No. 3, July 1985, pp.
111-120.

5. Glassner, H., and H. Fuchs, "Hardware Enhancements
for Computer Graphics", Fundamental Algorithms in
Computer Graphics, R.A. Earnshaw (Ed.), 1985, pp.
631 -658.

6. Hillis, D. W., The Connection Machine, The MIT Press,
Cambridge, MA, 1986.

7. Levinlhal, A., and T. Porter, "CHAP - A SIMD Graphics
Processor", ACM Computer Graphics, Vol. 18, No. 3,
July 1984.

8. Nagaraj, V., Graphics Algorithms for Parallel
Architectures, M.S.Thesis, Dept. of Electrical and
Computer Engineering, North Carolina State
University, 1988.

9. Niimi, H., Y. Imai, M. Murakami, S, Tomita, and H.
Hagiwara, "A Parallel Processor System for Three
Dimensional Color Graphics", ACM Computer Graphics,
Vol. 18, No. 3, July 1984.

136

